Обмен учебными материалами


4.Транспортные приложения. 8



Лист замечаний.

Оглавление:

1.Введение. 3

2.Водородная энергетика. 5

3. Производство водорода . 7

4.Транспортные приложения. 8

5.Достоинства водорода. 13

6.Электроводородный генератор (ЭВГ) . 16

7.Недостатки . 20

8.Заключение 22

1.Введение

Водородная энергетика — развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики). Водородная энергетика относится к нетрадиционным видам энергетики.

В последние десятилетие стало совершенно очевидным, что дальнейшее интенсивное развитие современной энергетики и транспорта ведет человечество к крупномасштабному экологическому кризису. Стремительное сокращение запасов ископаемого топлива на фоне естественного ежегодного прироста энергопотребления принуждает индустриально развитые страны расширять сеть атомных энергоустановок, которые во все возрастающей степени повышают опасность их эксплуатации. Резко обостряется проблема утилизации радиоактивных отходов.

Учитывая эту тревожную тенденцию, многие ученые и практики определенно высказываются в пользу ускоренного поиска альтернативных нетрадиционных источников энергии и применения в энергетике и на транспорте новых энергоносителей. В частности, их взоры обращаются к водороду, запасы которого в водах Мирового океана неисчерпаемы. К тому же неоспоримым достоинством этого топлива являются относительная экологическая безопасность его использования, приемлемость для тепловых двигателей без существенного изменения их конструкции, высокая калорийность, возможность долговременного хранения, транспортировки по существующей транспортной сети, не токсичность и т.д.. Однако существенной непреодоленной проблемой до сегодняшнего дня остается неэкономичность его промышленного производства. Более 600 фирм, компаний, концернов, университетских лабораторий и общественных научно-технических объединений Западной Европы, США, Австралии, Канады и Японии усиленно работают над удешевлением водорода .

Успешное решение этой важнейшей задачи революционным образом изменит всю мировую экономику и оздоровит окружающую среду. Есть целый ряд известных способов разложения воды: химический, термохимический, электролиз и др., но все они обладают одним и тем же крупным недостатком - в технологическом процессе получения водорода используется дорогостоящая высокопотенциальная энергия, на получение которой в свою очередь затрачивается дефицитное ископаемое топливо (уголь, природный газ, нефтепродукты) или электроэнергия, вырабатываемая на электростанциях. Достаточно сказать, что при осуществлении традиционного электролиза в промышленных условиях затраты электроэнергии на выработку одного кубометра водорода составляют 18-21,6 МДж, а общий энергорасход с учетом производства самой электроэнергии превышает 50 МДж, что делает водород недопустимо дорогим (около 2 $/м3 ).

Вместе с тем наша планета в буквальном смысле слова купается в потоке тепловой энергии, поступающей от Солнца, из земных недр и от хозяйственной деятельности человека. Задача сводится лишь к тому как "вписать" этот неиссякаемый источник дарового низкопотенциального тепла в промышленную технологию получения водорода.[7]

Загрузка...

2.Водородная энергетика

На наших глазах набирает силу новая отрасль промышленности - и технология. Потребность экономики в водороде идет по нарастающей. Ведь это простейшее и легчайшее вещество может использоваться не только как топливо, но и как необходимый сырьевой элемент во многих технологических процессах. Он незаменим в нефтехимии для глубокой переработки нефти, без него не обойтись, скажем в химии при получении аммиака и азотных удобрений,а в черной металлургии с его помощью восстанавливается железо из руд.

Такие существующие виды органического топлива, как газ, нефть и уголь, тоже служат сырьем в этих или подобных процессах,но еще полезнее извлечь из них самый экономный и чистый энергоноситель- тот же водород.

Водород - идеальный экофильный вид топлива. Очень высока и его калорийность - 33 тыс.Ккал/кг,что в 3 раза выше калорийности

бензина. Он легко транспортируется по газопроводам,потому что у

него очень малая вязкость. По трубопроводу диаметром 1,5м с ним

передается 20тыс. Мегаватт мощности. Перекачка легчайшего газа на расстояние в 500км. почти вдесятеро дешевле, чем передача такого же количества электроэнергии по линиям электропередачи. Как и природный газ, водород пригоден на кухне для приготовления пищи, для отопления и освещения зданий. Чтобы продемонстрировать его возможности, американские ученые построили "водородный дом",в котором для освещения использовался водород. Передавать водород в жидком виде- удовольствие очень дорогое, т.к. для его сжижения нужно потратить почти половину энергии, содержащейся в нем самом. Кроме того, должна быть обеспечена идеальная теплоизоляция трубопровода, так как темпера тура жидкого водорода очень низка.

Как топливо водород сжигается в двигателях ракет и в топливных элементах для непосредственного получения электроэнергии при соединении водорода и кислорода. Его можно использовать и как топливо для авиационного транспорта.

Водородная энергетика сулит ряд выгод. Поэтому появилось много

энтузиастов водородной энергетики, возникли их ассоциации, в том числе международная.

Сейчас в мире получают около 30 миллионов тонн водорода в год,

причем в основном из природного газа. Согласно прогнозам за 40 лет производство водорода должно увеличиться в 20-30 раз. Предстоит с помощью атомной энергетики заменить нынешний источник водорода - природный газ- на более дешевое и доступное сырье - на воду. Здесь возможны два пути.

Первый путь - традиционный, с помощью электрохимического разложения воды.

Второй путь менее известен. Если нагреть пары воды до 3000-3500 C, то водные молекулы развалятся сами собой.

Оба способа получить водород из воды пока дороже, чем из природного газа. Однако природный газ дорожает, а методы разложения воды совершенствуются. Через какое-то время водород из воды станет дешевле. В отдельных случаях и сейчас выгодно получать водород с помощью электролиза в ночные часы, когда имеется лишняя и дешевая электроэнергия.

Водородная энергетика бурно развивается, но недаром все чаще говорят об атомно-водородной энергетике. Требуются большие энергетические расходы для получения водорода. Тандем "ядерный реактор-водородный генератор"- претендует ныне на роль энергетического лидера в экономике XXI века. [6]

3. Производство водорода

Водород имеет обширную диверсифицированную ресурсную базу. Действительно, водород можно получить из первичной энергии всех видов, включая практически все ископаемые топлива и первичную электроэнергию (ядерную, гидравлическую, фотоэлектричество и ветровую). Именно это достоинство придает водороду особую стратегическую значимость с точки зрения возможностей снижения зависимости стран-импортеров органических топлив (США, Япония, стран ЕС, а в последнее время и Китая) от внешних поставок углеводородов, в первую очередь, нефти, используемой для обеспечения топливом транспорта.

4.Транспортные приложения

Производство электрической энергии для автомобилей, водного транспорта, и т. д. Водородная автомобильная инфраструктура. К концу 2008 года во всём мире функционировало 2000 водородных автомобильных заправочных станций. Из общего количества заправочных станций, построенных 2004—2005 году, всего 8 % работают с жидким водородом, остальные с газообразным. Планируется строительство

o Водородное шоссе (Калифорния) — К 2010 году 200 заправочных станций на главных шоссе штата.

o КHi Way Initiative — водородное шоссе в штате Нью-Йорк (США).

o Водородный коридор (Канада) — 900 км водородного коридора вдоль главных дорог между Монреалем и Виндзором.

o HyNor (Норвегия) — водородное шоссе между городами Осло и Stavanger (580 км) до 2008 го да.

o 2H2 — водородное шоссе Иллинойса.

o SINERGY — Сингапурская энергетическая программа

o he Northern H (Канада, США) — К 2010 году планируется соединить заправочными станциями крупные города вдоль главных торговых путей Манитобы (Канада), Дакоты, Миннесоты, Айовы и Висконсина.

o New York Hydrogen Network: H2-NET (США) — 20 заправочных станций между Нью-Йорком и Буффало (штат Нью-Йорк).

General Motors заявлял о возможных планах строительства 12000 водородных заправочных станций в городах США и вдоль главных автострад. Стоимость проекта компания оценивает в $12 млрд.

Водородное шоссе. Отсутствие водородной инфраструктуры является одним из основных препятствий развития водородного транспорта. Решением проблемы может стать применение водород, а в качестве топлива для двигателя внутреннего сгорания, или смесей топлива с водородом, например, HCNG. В январе 2006 года Mazda начала продажи битопливного автомобиля Mazda RX-8 с роторным двигателем, который может потреблять и бензин, и водород. В июле 2006 года транспортная компания BVG (Berliner Verkehrsbetriebe) из Берлина объявила о закупках к 2009 году 250 автобусов MAN с двигателями внутреннего сгорания, работающими на водороде, что составит 20 % от автопарка компании. В 2006 году Ford Motor Company начал выпуск автобусов с двигателями внутреннего сгорания, работающими на водороде. (см. Автобусы Ford)

Компании — основные игроки. Производители водорода:

o Praxair

o Air Liquide

o BOC Group

o Iwatani International (производит 40 % водорода в Японии)

o Linde (Германия)

Ёмкости для хранения водорода:

o ECD Ovonics

o HERA Hydrogen Storage Systems

o Dynetek

o Millennium Cell

Оборудование для производства водорода:

o ChevronTexaco

o H2Gen

o Hydro

o Hydrogenics

o HyRadix

BP — ключевой игрок в демонстрационных водородных проектах по всему миру.

4.1 Водородная заправочная станция.

4.1.1 Транспортные приложения.

Автомобильный транспорт. В 2006 году было запущено в эксплуатацию около 100 новых автомобилей, автобусов, мотоциклов и т. д. на топливных элементах. К концу 2007 году в мире будет эксплуатироваться около 900 транспортных средств. В автомобильных приложениях преобладают PEM технологии. В 2005 году был изготовлен всего один автомобиль с PAFC топливным элементом — остальные на PEM-технологиях. Разработчики смогли снизить стоимость автомобильных водородных топливных элементов с $275 за кВт мощности в 2002 году до $110 за кВт в 2005. Департамент Энергетики США (DoE) планирует снизить стоимость до $30 за кВт мощности к 2020 году. В марте 2006 года германский HyWays проект опубликовал прогнозы проникновения водородного автотранспорта на европейский рынок.

Воздушный транспорт Корпорация Boeing прогнозирует, что топливные элементы постепенно заменят в авиации вспомогательные энергетические установки. Они смогут генерировать электроэнергию, когда самолет находится на земле, и быть источниками бесперебойного питания в воздухе. Топливные элементы будут постепенно устанавливаться на новое поколение Боингов 7E7, начиная с 2008 года.

Железнодорожный транспорт. Для данных приложений требуется большая мощность, а размеры силовой установки имеют малое значение. Железнодорожный исследовательский технологический институт (Япония) планирует запустить поезд на водородных топливных элементах в эксплуатацию к 2010 году. Поезд сможет развивать скорость 120 км/ч, и проезжать 300—400 км без заправки. Прототип был испытан в феврале 2005 года. В США эксплуатация локомотива с водородным топливным элементом мощностью 2 тысячи л.с. начнётся в 2009 году.

Водный транспорт. В Германии производятся подводные лодки класса U-212 с топливными элементами производства Siemens AG. U-212 стоят на вооружении Германии, поступили заказы из Греции, Италии, Кореи, Израиля. Под водой лодка работает на водороде и практически не производит шумов. В США поставки SOFC топливных элементов для подводных лодок могут начаться в 2006 году. Компания FuelCell Energy разрабатывает 625 кВт топливные элементы для военных кораблей. Японская подводная лодка Urashima с топливными элементами PEMFC производства Mitsubishi Heavy Industries была испытана в августе 2003 года.

Складские погрузчики Чуть менее половины новых топливных элементов, установленных в 2006 году на транспортные средства, были установлены на складские погрузчики. Замена аккумуляторных батарей на топливные элементы позволит значительно сократить площади, занимаемые аккумуляторными цехами. Wal-Mart в январе 2007 года завершил вторую серию испытаний складских погрузчиков на топливных элементах.[5]

5.Достоинства водорода

Запасы водорода неисчерпаемы и легкодоступны и автоматически возобновляемы, что устраняет затраты на поиск и разработку месторождений, а также на восполнение заменителями изъятых объемов при подземных разработках и на использование или восстановление отработанных пород:

· во-первых, основное "месторождение" – вода, разложение молекул которой дает чистый водород. Источниками водорода могут быть уголь, газ, биомасса – как отходов, так и живых растений. У некоторых представителей группы зелёных водорослей, например, Chlamydomonas reinhardtii, при нехватке кислорода и серы резко ослабевают процессы фотосинтеза, и начинается бурная выработка водорода. Этот эффект обнаружил в конце 90-х годов прошлого столетия исследователь из Беркли, Анастасиос Мелис.

· во-вторых, в результате сгорания водорода с доступом кислорода образуется снова вода, побочных продуктов сгорание не дает, нет не сгоревших частиц пепла, запыляющих атмосферу, нет выбросов вредных газообразных соединений типа углекислого газа (парниковых газов).

Не последнее слово среди преимуществ водородной энергетики играют и энергетические показатели водорода. Теплота сгорания водорода наиболее высока, энергоотдача водорода при соединении с кислородом составляет 120,7 ГДж на тонну. Эффективность сгорания, в частности в двигателе внутреннего сгорания, у водорода на 30-40 % выше, чем у используемых сейчас углеводородов (производные нефти, природный газ). Водород в топливных элементах при использовании на транспорте имеет эффективность на 100-200 % выше, чем бензин. Применение в двигателях внутреннего сгорания благодаря уникальным свойствам водорода, дает возможность повысить по сравнению с бензиновыми двигателями КПД двигателя на 50-70 %.

Вторым достоинством водородной энергетики является экологичность. В процессе сгорания водорода образуется самая обыкновенная вода, которая безопасна для окружающей среды. При использовании в качестве топлива водородометановых смесей резко снижается токсичность выбросов: при сгорании смеси с содержанием водорода 20-40 % по объёму (5-10 % по весу) токсичность выбросов в 2-4 раза меньше, чем при сгорании безводородного топлива, при этом на 35-40 % уменьшается эксплуатационный расход топлива и на 20-25 % увеличивается эксплуатационная экономичность. При работе двигателей, использующих смеси с долей водорода 20 %, выполняются нормы Евро-4, а с долей 44-48 % – Евро-5. Правда, ради объективности, стоит упомянуть о том, что современные технологии промышленного производства водорода не отличаются высокой экологичностью, но в общем от внедрения водородной энергетики природа все-таки будет в выиграше.

Взяв к вниманию только эти преимущества водорода можно без доли сомнения констатировать, что у водорода огромное будущее, и в первую очередь – в качестве источника энергии. Мировая промышленность живо отреагировала: производство водорода ведется уже достаточно давно. Водород используют не только для потребностей отдельных производств (аммиака, метанола, мыла и пластмасс, маргарина из жидких растительных масел, упаковочного газа, для атомно-водородной сварки), но и в качестве энергоносителя – и в виде топливных элементов и как непосредственного топлива, в частности, ракетного, а в последние десятилетия – топлива для легкового, грузового и пассажирского транспорта.

США, Япония, страны Евросоюза уже более 30 лет постепенно переводят на водород все: крупные предприятия, автомобили, автобусы. В Лондоне в настоящее время эксплуатируется более 8000 автобусов с двигателями внутреннего сгорания, работающими на водороде. Не останавливают своих исследований в области использования водорода для двигателей и ведущие автомобилестроительные компании, из года в год демонстрирующие на автомобильных выставках свои достижения. На данном этапе большинство уважающих себя автомобильных компаний могут похвастаться общественности прототипами автомобилей на водороде. До повсеместного внедрения водородной энергетики на транспорте дело еще не дошло, но эти времена уже на за горами.[3]

6.Электроводородный генератор (ЭВГ)

В результате проведенных работ изобретено в 1997 простое высокопроизводительное устройство для разложения воды и производства из нее беспрецедентно дешевого водорода методом гравитационного электролиза раствора электролита, получившее название “электроводородный генератор (ЭВГ)”. Он приводится в действие механическим приводом и работает при обычной температуре в режиме теплового насоса, поглощая через свой теплообменник необходимое при этом тепло из окружающей среды или утилизируя теплопотери промышленных или транспортных энергоустановок. В процессе разложения воды подведенная к приводу ЭВГ избыточная механическая энергия может быть на 80 % преобразована в электроэнергию, которая затем используется любым потребителем на нужды полезной внешней нагрузки. Стоимость его производства становится в 1,5-2 раза ниже суммарной стоимости добычи и транспортировки природного газа. Применение водородного двигателя в перспективе особенно эффективно в большой и малой энергетике, на всех видах транспорта, в сельском и коммунальном хозяйствах, в химической, цементной, целлюлозно-бумажной, холодильной, атомной и космической промышленности, цветной и черной металлургии, при опреснении морской воды, проведении сварочных работ и т. д..

6.1Перспективы ЭВГ

Электроводородный генератор конструктивно прост, органично вписывается в компоновку различных силовых двигательных установок транспортных средств, например, автомобиля, автобуса, сельхозмашины или трактора и хорошо с ними агрегатируется, особенно с тепловыми турбинами. При этом наряду с решением основной технико-экономической задачи, обусловленной двукратным повышением топливной экономичности за счет полезного использования теплопотерь ДВС, а в результате снижения его токсичности и увеличения общего КПД до 68-70 % , создается предпосылка для создания уже в ближайшем будущем принципиально нового, более совершенного транспортного средства - массового электромобиля с большим запасом хода, работающим на тепломеханическом источнике тока.

Оснащение приводов буровой и дорожно-строительной техники, различных самоходных машин ЭВГ снизит в 1,7-2 раза потребление дизельного или газообразного топлива, что повлечет за собой уменьшение себестоимости газодобычи.

Перевод железнодорожного транспорта на тепловозную тягу с применением ЭВГ сулит резкое снижение эксплуатационных издержек на техническом обслуживании электрических сетей и существенную экономию электроэнергии.

ЭВГ на морских и речных судах может использовать тепло забортной воды, что даст возможность заменить атомные энергоустановки, многократно сократить запасы перевозимого углеводородного топлива, а тем самым повысить полезную грузоподъемность и экологическую безопасность эксплуатации судов при фактически неограниченной автономности плавания. Наряду с этим вместо традиционного винта может осуществляться непосредственное прямое преобразование химической энергии сжигаемых водорода и кислорода в механическую кинетическую энергию в прямоточных реактивных водометных движителях, что упростит конструкцию главного двигателя судна. Плавающие мобильные электрогазогенераторные станции смогут снабжать фактически даровой тепловой и электрической энергией крупные прибрежные населенные пункты, промышленные или сельскохозяйственные объекты.

Схема применения ЭВГ на воздушных судах вместе с теплообменниками, осуществляющими энергетическую связь между ними и турбинными двигателями, дополнительно должна содержать бортовой конденсатор водяного пара вспомогательных газовых турбовинтовых ДВС, работающих на чистой водородно-кислородной смеси, что даст возможность многократно использовать минимальный запас оборотной воды в замкнутом цикле, а также в достатке обеспечить транспортное средство электроэнергией. Такое конструктивное решение повлечет за собой снижение полетного веса за счет уменьшения запаса топлива, а, следовательно, увеличит грузоподъемность самолета в зависимости от его класса и дальности полета на несколько десятков тонн, что резко сократит себестоимость перевозок.

На космических станциях ЭВГ может заменить гироскопы и традиционные солнечные батареи, а также обеспечить ориентационные двигатели эффективным, многократно более дешевым и безопасным топливом.

Утилизация избыточного тепла в угольных шахтах ликвидирует острую проблему безопасности угледобычи, а подземное выжигание остатков угля неперспективных шахт и использование полученного тепла на производство водородного топлива и электроэнергии решит социальные проблемы угледобывающих регионов.

Различные модификации мощностного ряда ЭВГ могут найти свое применение в малой стационарной и мобильной энергетике, особенно в сфере энергообеспечения удаленных поселений, промышленных объектов, экспедиций, фермерских хозяйств, сушилок, тепличных комплексов и т.д. В последнем случае станет возможным круглогодичное валовое производство дешевой растениеводческой продукции в районах с холодным климатом. Энергетическим источником для ЭВГ при этом может служить теплота любых водоемов, промышленных и бытовых стоков, от сжигания мусора и органических отходов, наружного или внутреннего воздуха (например, метрополитена, шахт, жилых и общественных зданий), различных промышленных паров и газов, в том числе в металлургии, химии и теплоэнергетике, компостных ям в сельском хозяйстве, а также солнечная, ветровая и геотермальная энергия.

Применение изобретения на действующих тепловых и атомных электростанциях существенно повысит их рентабельность за счет полезного использования теплопотерь. Существует реальная возможность перевода тепловых станций на использование в качестве топлива водорода, полученного при преобразовании теплоты близлежащих водоемов. В этом случае себестоимость производства электроэнергии снизится в 1,5 раза.

В черной металлургии водород заменит дорогостоящий и дефицитный кокс, позволит вести более эффективный внедоменный процесс получения стали, отапливать печи и применять в конвекторах побочно выделяющийся при разложении воды кислород, а не производить его для этой цели специально. При этом трубы металлургических заводов прекратят выбрасывать в атмосферу сотни тысяч тонн углекислоты.

Простота конструкции ЭВГ для промышленных предприятий дает возможность в течение нескольких месяцев освоить серийный выпуск некоторых наиболее простых модификаций генератора для нужд малой энергетики.

Рисунок

1. Реактор

2. Поршневой двигатель внутреннего сгорания

3. Конденсатор

4. Радиатор охлаждения

5. Побудитель расхода

6. Побудитель расхода

7. Побудитель расхода

8. Охладитель кремния [2]

7.Недостатки

Транспортировка и хранение. Транспортировка и хранение водорода являются достаточно непростой задачей вследствие его физических свойств. Низкая плотность газообразного водорода, низкая температура его сжижения, а также высокая взрывоопасность в сочетании с негативным воздействием на свойства конструкционных материалов, выдвигают на первый план проблемы разработки эффективных и безопасных систем хранения водорода. Именно эти проблемы сдерживают развитие водородной энергетики в настоящее время. Известны следующие методы хранения водорода:

• Хранение сжатого газообразного водорода в газовых баллонах и стационарных системах хранения. На сегодняшний момент, баллоны, устанавливающиеся на автомобиль, выдерживают давление в 35 МПа и обеспечивают пробег авто до 200 км. Для увеличения пробега до 500км необходимо повысить давление в баллонах до 70МПа, что достаточно проблематично. Помимо этого, для обеспечения требований безопасности, баллоны должны выдерживать ударное воздействие как минимум в два раза превышающее давление газа. Данный метод хранения наиболее дешев, но небезопасен, а баки для хранения громоздки и имеют большой вес: для хранения одного килограмма водорода необходим баллон массой 35кг.

• Хранение жидкого водорода в криогенных контейнерах. В таких системах хранения водород находится в жидком состоянии, находясь в интервале температур между точкой замерзания 17К и точкой кипения – 20К. Серьезной проблемой является также испарение водорода. За сутки, как правило, испаряется около 3% вещества вследствие просачивания водорода сквозь стенки контейнеров. Технология обеспечивает в отличие от предыдущего метода большую безопасность, но более сложна в производстве и имеет более высокую стоимость.

• Использование гидридов. Хранение атомов водорода в кристаллической решетке других веществ. Извлечение происходит путем нагревания гидрида. Недостатком гидридов является долгий процесс их зарядки и относительно большие траты энергии на нагрев, хотя подобная технология хранения на данный момент является наиболее перспективной.[1]

8.Заключение

Анализируя преимущества водорода можно сказать, что перед водородной энергетикой открыто все будущее, и она аккумулирует в себе огромнейший потенциал для дальнейшего развития и применения. Мировой промышленностью производство водорода ведется достаточно давно. Водород используется для производства пластмасс, мыла, аммиака. Широкое применение водород получил в ракетно-космической промышленности, являясь наиболее оптимальным компонентом топлива с точки зрения энергетических показателей. В последние годы широкое применение водород получил как топливо для пассажирского, грузового и легкового транспорта.

Передовые мировые державы постепенно переводят на водород крупные предприятия, объекты промышленности, транспортные средства. Это страны Евросоюза, США, Япония, которые еще более 30 лет назад осознали перспективность применения водорода как источника энергии. Огромнейшим интересом водород пользуется в компаниях по производству автомобилей, которые на ежегодных выставках все чаще и чаще демонстрируют свои автомобили, работающие на водородном топливе. Конечно, широкое внедрение водорода еще не близко, но ввиду бурного роста активности вокруг него, и развития технологий, водородная революция не за горами.

Человечество осознало, что для дальнейшего существования водород может стать уникальным источником не только энергии, но и самой жизни на планете Земля.[4]

Список литературы

1.Водородная энергетика - сказка или реальность

2. http://solarsity.ru/index.php/hydrogen-energy

3. o8ode.ru›article/energy/energy1.htm

4. http://energycraft.ru/Vodorod/vodorod-kak-alternativnyj-istochnik-jenergii.html

5 . http://energy-of-the-future.narod.ru/vodorodnaya-energetika.html

6. http://www.bibliofond.ru/view.aspx?id=484178

7. rus-studennikov.htm


Последнее изменение этой страницы: 2018-09-12;


weddingpedia.ru 2018 год. Все права принадлежат их авторам! Главная